Braiding Operators are Universal Quantum Gates

نویسنده

  • Louis H. Kauffman
چکیده

This paper is an exploration of the role of unitary braiding operators in quantum computing. We show that a single specific solution R of the Yang-Baxter Equation is a universal gate for quantum computing, in the presence of local unitary transformations. We show that this same R generates a new non-trivial invariant of braids, knots, and links. The paper discusses these results in the context of comparing quantum and topological points of view. In particular, we discuss quantum computation of link invariants, the relationship between quantum entanglement and topological entanglement, and the structure of braiding in a topological quantum field theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yang–Baxterization and Hamiltonian

It is fundamental to view unitary braiding operators describing topological entanglements as universal quantum gates for quantum computation. This paper derives the unitary solution of the Quantum Yang–Baxter equation via Yang–Baxterization and constructs the Hamiltonian responsible for the timeevolution of the unitary braiding operator.

متن کامل

Universal Quantum Gate , Yang – Baxterization and Hamiltonian

It is fundamental to view unitary braiding operators describing topological entangle-ments as universal quantum gates for quantum computation. This paper derives a unitary solution of the quantum Yang–Baxter equation via Yang–Baxterization and constructs the Hamiltonian responsible for the time-evolution of the unitary braiding operator.

متن کامل

Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum g...

متن کامل

Yang-Baxterizations, Universal Quantum Gates and Hamiltonians

The unitary braiding operators describing topological entanglements can be viewed as universal quantum gates for quantum computation. With the help of the Brylinski’s theorem, the unitary solutions of the quantum Yang–Baxter equation can be also related to universal quantum gates. This paper derives unitary solutions of the quantum Yang–Baxter equation via Yang–Baxterization from the solutions ...

متن کامل

Universal Gates via Fusion and Measurement Operations on SU(2)4 Anyons

We examine a class of operations for topological quantum computation based on fusing and measuring topological charges for systems with SU(2)4 or k = 4 Jones-Kauffman anyons. We show that such operations augment the braiding operations, which, by themselves, are not computationally universal. This augmentation results in a computationally universal gate set through the generation of an exact, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004